

CUMMINS K50-DM PERFORMANCE DATA

	Engine Perfo	ormance	
		Site Rated	Site Maximum (Overload)
Engine Power	kW [hp]	1291 [1730]	1417 [1900]
Governed Speed	rpm	1800	
Horsepower Production Tolerance	$\pm\%$	5	
Torque	N.m [lb.ft]	4341 [3202]	
Brake Mean Effective Pressure	kPa [psi]	1705 [247]	1872 [272]
Compression Ratio		13:9:1	
Piston Speed	m/sec [ft/min]	9.5 [1876]	
Friction Power	kW [hp]	168 [225]	
	Exhaust S		
Exhaust Gas Flow	l/sec [cfm]	4108 [8705]	4259 [9025]
Exhaust Gas Temperature (Turbine out)	°C [°F]	446 [835]	464 [867.425]
Exhaust Gas Temperature (Manifold)	°C [°F]	582 [1078]	604 [1118]
Heat Rejection to Exhaust	kW [Btu/min]	966 [54971]	1038 [59100]
	Emissi		1050 [57100]
NOx (Oxides of Nitrogen)	g/kw.hr [g/bhp.hr]	8.93 [6.66]	
HC (Hydrocarbons)	g/kw.hr [g/bhp.hr]	0.40 [0.30]	
CO (Carbon Monoxide)	g/kw.hr [g/bhp.hr]	0.64 [0.48]	
	Air In		
Intake Manifold Pressure	kPA [in Hg]	207 [61]	
	Fuel Sys		
Fuel Flow to pump (approx.)	l/hr [gal/hr]	609.5 [161.0]	609.5 [161.0]
Max. allowable Fuel supply to	°C [°F]	60 [140.0]	60 [140.0]
Pump temperature Fuel flow return to tank (approx.)	l/hr [gal/hr]	288.6 [76.3]	260.6 [68.9]
Fuel now return to tank (approx.)			
Fuel return to tank temperature (approx.)	°C [°F]	71 [160]	71 [160]
Fuel Rail Pressure	kPa [psi]	924 [134]	1148 [166.46]
Average Fuel Consumption- Emission ISO 8178 D2 Test Cycle	l/hr [gal/hr]	168.6 [44.6]	
	Cooling S		
	Pump Two Loop Lov	w Temperature After	cooling
Main Engine Circuit			
Coolant flow to Main Cooler (open	l/min [gal/min]	1117 [295]	
thermostat)			
Heat Rejection to Engine Coolant	kW [Btu/min]	481 [27367]	
Aftercooler (LTA) circuit			
Coolant flow to LTA Cooler (open	l/min [gal/min]	288 [76]	
thermostat) Heat Rejection to Engine Coolant	kW [Btu/min]	227 [12908]	250 [14250]
Max. Coolant Inlet Temp. from LTA Cooler – for Keel Cooled	°C [°F]	71 [160]	

LEROY-SOMER LSA 50.2 PERFORMANCE DATA

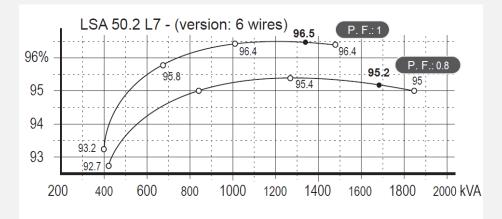
GENERAL CHARACTERISTICS

Insulation class	Н	Excitation system	PMG
Winding pitch	2/3	AVR type	R450/D510C
Number of wires	6	Voltage Regulation	± 0.5 %
Protection	IP 23	Short-circuit current	300% (3 IN): 10s
Altitude	$\leq 1000 \text{ m}$	Total Harmonic Distortion THD (**) in no load	< 3.5 %
Overspeed	2250 min-1	Total Harmonic Distortion THD (**) on linear load	< 3.5 %
Air Flow	2.2 m3/s, 60Hz	Waveform: NEMA = TIF (**)	< 50

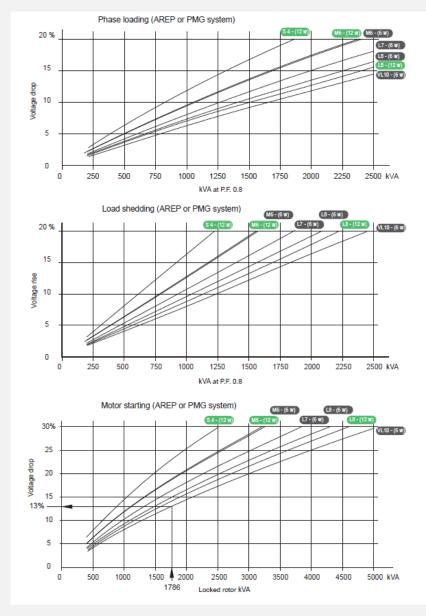
(*) Regulator input voltage, steady state, within the below total harmonic distortion (THD) limits.

(**) Total harmonic distortion between phases, no-load or on-load (non-distorting)

Ratings 60Hz - 1800 R.P.M


kVA / kW – P.F	$\Gamma = 0.8$								
Duty/ °C		Continuous duty /40 °C		Continuous duty /40 °C		Stand-by /40 °C		Stand-by /27 °C	
Class/ °K		H / 125 °K		F / 105 °K		H / 150 °K		H / 163 °K	
Phase		3 p	oh.	3 p	h.	3]	ph.	3	ph.
Y		380V	480V	380V	480V	380V	480V	380V	480V
LSA 50.2 L7	kVA	1375	1680	1240	1510	1440	1765	1510	1850
	kW	1100	1344	992	1208	1152	1412	1208	1480

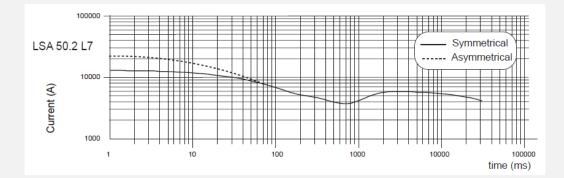
Reactances (%). Time constants (ms) – Class H / 480 V


		L7 (6f)				
Kcc	Short-circuit ratio	0.33				
Xd	Direct-axis synchro. Reactance unsaturated	377				
Xq	Quadrature-axis synchro. Reactance unsaturated	226				
T'do	No-load transient time constant	3750				
X'd	Direct-axis transient reactance saturated	18.1				
T'd	Short-circuit transient time constant	180				
X"d	Direct-axis sub transient reactance saturated	15.4				
T"d	Sub transient time constant	18				
X"q	Sub transient time constant	16.1				
Xo	Quadrature-axis sub transient reactance	3.7				
	saturated					
X2	Negative sequence reactance saturated	15.8				
Та	Armature time constant	27				
Other class H / 480V data						
io (A)	No-load excitation current	0.9				
ic (A)	On-load excitation current	4.1				
uc (V)	On-load excitation voltage	45				
ms	Response time ($\Delta U=20\%$ transient)	500				
kVA	Start (ΔU =20% cont. or 50% trans.)	3927				
%	Transient ΔU (on-load 4/4) – P.F: 0.8	12.8				
W	No-load losses	23820				
W	Heat dissipation	67290				

LEROY-SOMER LSA 50.2 PERFORMANCE DATA

Efficiencies @ 60Hz

Transient Voltage Variation 480V – 60Hz


LEROY-SOMER LSA 50.2 PERFORMANCE DATA

 For a starting P.F other than 0.6, the starting kVA must be multiplied by K = sine P.F / 0.8 Calculation example for a different P.F other than 0.6: Starter motor kVA calculated at 0.4 P.F = 1560 kVA.

\triangleright	Sin P.F 0.4 =	\blacktriangleright K = 1.145	kVA corrected =	Voltage dip corresponding to
	0.9165		1786 kVA	VL 10 = 13%

2) For voltages other than 480V (Y), 277V (Δ), 240 (YY) at 60Hz, then kVA must be multiplied by $\left(\frac{480}{U}\right)^2$

3-phase short-circuit curves at no load and rated speed (star connection Y)

Influence due to short circuit

Curves are based on a three-phase short circuit.

For other types of short circuit, use the following multiplication factors

	3-phase	2-phase L/L	1-phase L/N
Instantaneous (max.)	1	0.87	1.3
Continuous	1	1.5	2.2
Maximum duration (PMG)	10 sec.	5 sec.	2 sec.