Red Thread® II Product Data

Applications	Potable WaterpH 2-13 SolutionsWastewater	Brine SolutionsFood ProcessingCooling Water	 Chemical Processing Saltwater Handling Produced Water 	 Crude Oil & Gas CO₂ Effluent Drains
Materials and Construction			ess using amine-cured epox with a resin-rich interior surfa	
	ends have special pro	file, double-lead threads for	ning method for 2"-6" diamete or quick, reliable assembly. (e positive make-up and preve	Combined with specially-
	,	, , ,	method is used. Pipe is supple end tapered. Epoxy adhes	
Fittings	0		cal/temperature capabilities npression molded, contact mo	
Joining Systems		cured with epoxy adhesive litating joining runs of pipe	•	
		joining system. Double-le actions during installation.	ad threads provide quick	

Flanged

Available for all piping systems and diameters; factory assembled or shipped loose for assembly in the field.

Nominal	Nominal Dimensional Data									
Pipe Size	1.0).	0.1	D.		all mess	Wei	ght	Сар	acity
(in)	(in)	(mm)	(in)	(mm)	(in)	(mm)	(lbs/ft)	(kg/m)	(gal/ft)	(ft³/ft)
2	2.238	57	2.395	61	0.079	2.01	0.4	0.60	0.20	0.03
3	3.363	85	3.576	91	0.107	2.71	1.0	1.49	0.46	0.06
4	4.364	111	4.562	115	0.099	2.51	1.2	1.79	0.78	0.10
6	6.408	163	6.678	170	0.135	3.43	2.4	3.51	1.68	0.22
8	8.356	212	8.642	219	0.143	3.63	3.3	4.91	2.85	0.38
10	10.357	263	10.731	273	0.187	4.75	5.3	7.89	4.38	0.59
12	12.278	312	12.710	323	0.216	5.49	7.2	10.71	6.15	0.82
14	14.029	356	14.567	370	0.269	6.83	10.1	15.33	8.03	1.07
16	16.031	407	16.637	423	0.303	7.70	13.2	19.79	10.49	1.40
18	17.820	453	18.460	469	0.320	8.13	15.5	23.07	12.96	1.73
20	19.830	504	20.480	520	0.325	8.25	17.5	26.04	16.04	2.15
24	23.830	605	24.580	624	0.375	9.53	24.3	36.16	23.17	3.10
Tolerances or maxi	, mum/minimum	limits can b	e obtained fro	om NOV Fil	ber Glass Sy	vstems.				

www.fgspipe.com

NOV Fiber Glass Systems

Prope	erties of Pipe Se	ections Based on	Minimum Reinforc	ed Walls
Size (In)	Reinforcement End Area(In²)	Reinforcement Moment of Inertia (In⁴)	Reinforcement Section Modulus (In ³)	Nominal Wall End Area (In²)
2	0.50	0.33	0.28	0.58
3	1.01	1.51	0.85	1.16
4	1.21	3.00	1.32	1.39
6	2.60	13.9	4.20	2.99
8	3.69	33.3	7.7	4.23
10	5.41	74.8	13.9	6.19
12	7.40	144	22.6	8.48
14	10.6	268	36.8	12.1
16	13.6	450	54.1	15.6
18	15.9	652	70.6	18.2
20	18.0	909	88.8	20.6
24	24.9	1817	148	28.5

Average Physical Properties	5				
Property		75°F psi	24°C MPa	210°F psi	99°C MPa
Axial Tensile - ASTM D2105 Ultimate Stress Modulus of Elasticity		10,300 1.61 x 10 ⁶	71 11,128	7,700 1.21 x 10 ⁶	53 8,343
Poisson's Ratio V _{a/h} (V _{h/a})			0.34 (0.64	4)	
Axial Compression - ASTM D695 Ultimate Stress Modulus of Elasticity		33,000 1.26 x 10 ⁶	230 8,687	19,400 0.6 x 10 ⁶	134 4,137
Beam Bending - ASTM D2925 Ultimate Stress Modulus of Elasticity (Long Term)		23,000 1.46 x 10 ⁶	158.6 10,000	16,000 0.96 x 10 ⁶	110 6,630
Hydrostatic Burst - ASTM D1599 Ultimate Hoop Tensile Stress		34,000	234	43,500	300
Hydrostatic Design - ASTM D2992, Procedure A - Hoop Tensile Stress Cyclic 150 x 10 ⁶ Cycles	<u>Sizes</u> 2"- 3" 4"-24"	9,410 13,073 ⁽¹⁾	64.9 90.1 ⁽¹⁾	5,790 8,447 ⁽¹⁾	39.9 58.2 ⁽¹⁾
⁽¹⁾ Data extrapolated from complete data sets obtained at 1	50°F and 200°F				
Thermal Expansion Coefficient - ASTM D696		0.88 x 10 ^{-t}	⁵ in/in/°F	1.58 x 10⁵ m	m/mm/°C
Thermal Conductivity		0.23 BTU	/hr-ft-°F	0.4 W/n	
Specific Gravity - ASTM D792			1.	.8	
Hazen-Williams Coefficient			1	50	
Absolute Surface Roughness		0.00021	Inch	0.0053	mm
Manning's Roughness Coefficient, n			0.0	009	

Testing:

Hydrostatic testing should be performed to evaluate the structural integrity of a new piping system installation. Test pressures of 1.5 times the design pressure but not exceeding 1.2 times the static pressure rating of the lowest rated fiberglass component in the piping system are recommended. Contact the company if test pressures exceed 450 psig before testing. The hydro test pressure should be repeated up to ten times to provide a high degree of confidence in the piping system. The final pressurization cycle should be allowed to stabilize for 15-30 minutes, then inspected for leaks. Do not attempt to repair leaks while system is pressurized. The hydro test should be repeated after any re-work is performed.

When hydro testing, open vents to prevent entrapment of air in the lines as the system is slowly filled with water. Then close the vents and slowly pressurize to the test pressure. Upon completion of hydrotest, relieve the pressure on the system slowly, open vents and any drains to allow for complete drainage of the system.

Piping systems with design temperatures above 150°F should be tested at 1.2 times the static pressure rating of the lowest rated fiberglass component in the system.

Pr	Pressure Ratings						
		Maximum	Maximum E	External Pres	sure (psig) ⁽¹⁾		
Size (In)	Cyclic Pressure 200°F*	Internal Static Pressure (psig) 210°F	75°F	150°F	210°F		
2	300	450	85	80	75		
3	300	450	36	34	32		
4	300	450	34	30	27	I٢	
6	300	450	22	20	19	IL	
8	150	225	17	13	11	IL	
10	150	225	17	13	11	IL	
12	150	225	17	13	11	IL	
14	150	225	17	13	11	IL	
16	150	225	17	13	11	IL	
18	150	225	9.9	7.5	6.5		
20	150	225	7.8	6.0	5.2	IL	
24	150	225	6.9	5.3	3.5		

⁽¹⁾Vacuum Service: A full vacuum within the pipe is equivalent to 14.7 psig external pressure at sea level. External pressure ratings are based on test data obtained using ASTM D2924.

ASTM D2996 Designation Codes				
2"-3"	RTRP-11AF1-2111			
4"	RTRP-11AH1-2111			
6"-8"	RTRP-11AH1-2112			
10"	RTRP-11AH1-2114			
12"	RTRP-11AH1-2115			
14"-16"	RTRP-11AH1-2116			
18"-24"	RTRP-11AH1-2110			

*2"-24" Red Thread II is designed to API 15LR 7th Edition, Secion 5.5.1.

Re	Recommended Operating Ratings									
	Axial Tens			Axial Compressive Loads Max. (Lbs) ⁽¹⁾		Bending		Parallel Plate Loading ASTM D2412		
Size (in)	Max. (lbs) Temperature 75°F 210°F		Temper 75°F	rature 210°F	Radius Min. (ft) Entire Temp. Range	Torque Max. (Ft Lbs) Entire Temp. Range	Stiffness Factor (in³/lbs/in²)	Pipe Stiffness (psi)	Hoop Modulus x10 ⁶ (psi)	
2	1,280	930	4,160	2,420	51	90	71	311	2.6	
3	2,601	1,887	8,408	4,900	76	270	174	226	2.6	
4	3,110	2,260	10,070	5,860	97	420	142	86	2.6	
6	6,230	4,520	20,140	11,730	142	1,200	443	85	2.6	
8	8,570	6,220	27,720	16,150	183	2,200	569	49	2.6	
10	13,930	10,110	45,030	26,230	227	4,450	955	44	2.6	
12	19,050	13,820	61,600	35,890	269	7,250	1,460	40	2.6	
14	27,160	19,710	87,830	51,160	308	11,800	2,810	52	2.6	
16	35,020	25,410	113,220	65,960	352	17,400	4,030	50	2.6	
18	40,990	29,750	132,530	77,210	391	22,700	4,750	43	2.6	
20	46,350	33,630	149,850	87,300	433	28,500	4,960	32	2.6	
24	64,110	46,530	207,290	120,760	520	47,400	7,430	28	2.6	
⁽¹⁾ Comp	pressive loads	are for short c	olumns only.							

Water Hammer:

Care should be taken when designing an FRP piping system to eliminate sudden surges. Soft start pumps and slow actuating valves should be considered.

Pipe Lengths Available				
Size (in)	Random Length (ft)			
2-6	25 & 30			
8-24	20 & 40			

Supports

Proper pipe support spacing depends on the temperature and weight of the fluid in the pipe. The support spacing table is based on unrestrained continuous beam theory using the pipe bending modulus derived from long-term beam bending tests. The maximum spanslengths were developed to ensure a design that limits mid-span deflection to ¹/₂ inch and dead weight bending to ¹/₈ of the ultimate bending stress. Any additional loads on the piping system such as insulation, wind, seismic, etc. requires further consideration. Restrained (anchored) piping systems operating at elevated temperatures may resultinguide spacing requirements that are shorter than unrestrained piping systems. In this case, the maximum guide spacing governs the support span requirements for the system. Pipe spans near elbows requires pecial attention. Both support ed and unsupported elbows are considered in the following tables and must be followed to properly design the piping system.

There are seven basic rules to follow when designing piping system supports:

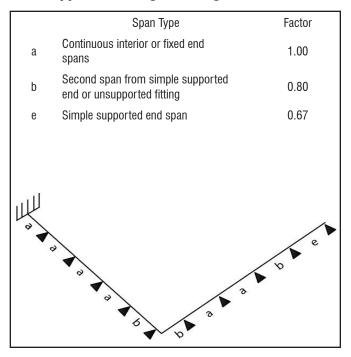
- 1. Do not exceed the recommended support span.
- 2. Support heavy valves and in-line equipment independently.
- 3. Protect pipe from external abrasion at supports.
- 4. Avoid point contact loads.
- 5. Avoid excessive bending. This applies to handling, transporting, initial layout, and final installed position.

Support Spacing vs. Specific Gravity

Maximum Support Spacing for Uninsulated Pipe

	Continuous Pipe Spans (Ft.) ⁽¹⁾⁽²⁾					
Pipe Size				Gas		
(in.)	75°F	150°F	210°F	75°F		
2	12.6	12.0	11.4	19.1		
3	15.0	13.5	12.6	22.1		
4	15.9	15.1	14.3	25.2		
6	19.2	18.3	17.3	30.8		
8	21.1	20.0	19.0	35.0		
10	23.2	22.0	20.9	38.9		
12	25.1	23.9	22.6	42.4		
14	27.4	26.0	24.7	45.3		
16	29.2	27.7	26.3	48.4		
18	30.4	28.9	27.4	51.1		
20	31.4	29.8	28.3	53.9		
24	34.1	32.4	30.7	59.0		
	γ for insulated pip -span deflection					

- Avoid excessive vertical loading to minimize bending stresses on pipe and fittings.
- 7. Provideadequateaxialandlateralrestrainttoensurelinestability during rapid changes in flow.


Specific Gravity	2.00	1.50	1.25	1.00	0.75
Multiplier	0.84	0.90	0.95	1.00	1.07

Example: 6" pipe @ 150°F with 1.5 specific gravity fluid, maximum support spacing = 18.3 x 0.90 = 16.5 ft.

Adjustment Factors for Various Spans With Unsupported Fitting at Change in Direction

	Span Type	Factor
а	Continuous interior or fixed end spans	1.00
b	Second span from supported end or unsupported fitting	0.80
c+d	Sum of unsupported spans at fitting	<u><</u> 0.75*
е	Simple supported end span	0.67
*For exa	Imple: If continuous support is 10 ft., exceed 7.5 ft. (c=3 ft. and d=4.5 ft.) v condition.	
		2

Adjustment Factors for Various Spans With Supported Fitting at Change in Direction

Thermal Expansion

The effects of thermal gradients on piping systems may be significant and should be considered in every piping system stress analysis. Pipe line movements due to thermal expansion or contraction may cause high stresses or even buckle a pipe line if improperly restrained. Several piping system designs are used to manage thermal expansion and contraction in above ground piping systems. They are listed below according to economic preference:

- 1. Use of inherent flexibility in directional changes
- 2. Restraining axial movements and guiding to prevent buckling
- 3. Use expansion loops to absorb thermal movements
- 4. Use mechanical expansion joints to absorb thermal movements

To perform a thermal analysis the following information is required:

- 1. Isometric layout of piping system
- 2. Physical and material properties of pipe
- 3. Design temperatures
- 4. Installation temperature (final tie in temperature)
- 5. Terminal equipment load limits
- 6. Support movements

A comprehensive review of temperature effects on fiberglass pipe may be found in NOV Fiber Glass Systems' "Engineering and Piping Design Guide", Manual No. E5000, Section 3.

Change in Temperature °F	Pipe Change in Length (In/100 Ft)
25	0.26
50	0.53
75	0.79
100	1.06
125	1.32
150	1.58
175	1.85

Restrained Thermal End Loads and Guide Spacing										
	Operating Temperature °F (Based on installation temperature of 75°F)									
	125°F		150°F		175°F		200°F		210°F	
Size (in)	Guide Spacing (ft)	Thermal End Load (Ibs)	Guide Spacing (ft)	Thermal End Load (Ibs)	Guide Spacing (ft)	Thermal End Load (Ibs)	Guide Spacing (ft)	Thermal End Load (Ibs)	Guide Spacing (ft)	Thermal End Loads (Ibs)
2	11.4	223	9.5	294	8.5	339	8.0	356	7.8	356
3	17.1	451	14.3	595	12.8	685	12.0	720	11.8	719
4	22.0	540	18.5	713	16.5	821	15.4	863	15.1	862
6	32.3	1,161	27.1	1,532	24.3	1,764	22.6	1,855	22.2	1,853
8	42.0	1,648	35.2	2,175	31.5	2,503	29.4	2,633	28.9	2,630
10	52.0	2,417	43.6	3,189	39.0	3,671	36.4	3,861	35.7	3,856
12	61.7	3,306	51.7	4,363	46.3	5,021	43.2	5,281	42.4	5,274
14	70.5	4,714	59.1	6,220	52.9	7,158	49.3	7,530	48.4	7,520
16	80.4	6,077	67.4	8,018	60.3	9,228	56.3	9,707	55.3	9,694
18	89.5	7,113	75.0	9,386	67.1	10,802	62.6	11,363	61.5	11,347
20	99.4	8,043	83.3	10,612	74.6	12,214	69.5	12,847	68.3	12,830
24	120.0	11,126	100.0	14,681	89.6	16,896	83.6	17,773	82.1	17,748

15LR-0004 LICENSEE Contact NOV Fiber Glass Systems for licensed products.

National Oilwell Varco has produced this brochure for general information only, and it is not intendedfordesignpurposes. Althougheveryefforthasbeenmadetomaintaintheaccuracyand reliabilityofitscontents, National Oilwell Varcoinnowayassumesresponsibilityforliabilityforany loss, damage or injury resulting from the use of information and data herein nor is any warranty expressed orimplied. Alwayscross-reference the bullet indate with the most current version listed at the web site noted in this literature.

www.fgspipe.com

2425 SW 36th Street San Antonio, Texas 78237 USA Phone: 1 (210) 434-5043 Fax:: 1 (210) 434-7543 2700 West 65th Street Little Rock, Arkansas 72209 USA Phone: 1 (501) 68-4010 Fax: 1 (501) 568-4465

©2009, NATIONAL OILWELL VARCO ® Trademark of NATIONAL OILWELL VARCO A1200 - October 2010